
brabeion Documentation
Release 0.1.dev11

Eldarion

February 10, 2017

Contents

1 Using brabeion 3
1.1 Getting Started . 3
1.2 Asynchronous Badges . 4

2 Models in brabeion 7

3 Templatetags in brabeion 9
3.1 badge_count . 9
3.2 badges_for_user . 9

4 Signals in brabeion 11

Python Module Index 13

i

ii

brabeion Documentation, Release 0.1.dev11

brabeion is a powerful, extensible, reusable application that provides support for awarding badges to users in
Django. It provides simple abstractions over awarding users badges for completing tasks, including multi-level badges,
and repeatable badges, making it super simple to add badges to a Django project.

Contents 1

brabeion Documentation, Release 0.1.dev11

2 Contents

CHAPTER 1

Using brabeion

1.1 Getting Started

class brabeion.base.Badge

brabeion works by allowing you to define your badges as subclasses of a common Badge class and registering
them with brabeion. For example if your site gave users points, and you wanted to award three ranks of badges
based on how many points a user had your badge might look like this:

from brabeion import badges
from brabeion.base import Badge, BadgeAwarded

class PointsBadge(Badge):
slug = "points"
levels = [

"Bronze",
"Silver",
"Gold",

]
events = [

"points_awarded",
]
multiple = False

def award(self, **state):
user = state["user"]
points = user.get_profile().points
if points > 10000:

return BadgeAwarded(level=3)
elif points > 7500:

return BadgeAwarded(level=2)
elif points > 5000:

return BadgeAwarded(level=1)

badges.register(PointsBadge)

There are a few relevant attributes and methods here.

slug
The unique identifier for this Badge, it should never change.

3

brabeion Documentation, Release 0.1.dev11

levels
A list of the levels available for this badge (if this badge doesn’t have levels it should just be a list
with one item). It can either be a list of strings, which are the names of the levels, or a list of
brabeion.base.BadgeDetail which have both names and description.

events
A list of events that can possibly trigger this badge to be awarded. How events are triggered is described in
further detail below.

multiple
A boolean specifying whether or not this badge can be awarded to the same user multiple times, currently if this
badge has multiple levels this must be False.

award(self, **state)
This method returns whether or not a user should be awarded this badge. state is guarnteed to have a "user"
key, as well as any other custom data you provide. It should return either a BadgeAwarded instance, or None.
If this Badge doesn’t have multiple levels BadgeAwarded doesn’t need to be provided an explicit level.

Note: BadgeAwarded.level is 1-indexed.

Now that you have your PointsBadge class you need to be able to tell brabeion when to try to give it to a user.
To do this, any time a user might have received a badge just call badges.possibly_award_badge with the
name of the event, and whatever state these events might need and brabeion will handle the details of seeing what
badges need to be awarded to the user:

from brabeion import badges

def my_view(request):
if request.method == "POST":

do some things
request.user.profile.award_points(15)
badges.possibly_award_badge("points_awarded", user=request.user)

more view

By default badges will be awarded at the current time, if you need to overide the award time of the badge you can pass
a force_timestamp keyword argument to possible_award_badge().

1.2 Asynchronous Badges

Note: To use asynchronous badges you must have celery installed and configured.

If your Badge.award() method takes a long time to compute it may be prohibitively expensive to call during the
request/response cycle. To solve this problem brabeion provides an async option to Badges. If this is True
brabeion will defer calling your award() method, using celery, and it will be called at a later time, by another
process (read the celery docs for more information on how celery works).

Because award() won’t be called until later you can define a freeze() method which allows you to provide and
additional state that you’ll need to compute award() correctly. This may be necessary because your Badge requires
some mutable state.

class AddictBadge(Badge):
stuff
async = True

4 Chapter 1. Using brabeion

http://github.com/ask/celery
http://celeryproject.org/docs/

brabeion Documentation, Release 0.1.dev11

def freeze(self, **state):
state["current_day"] = datetime.today()
return state

In this example badge the user will be awarded the AddictBadge when they’ve visited the site every day for a
month, this is expensive to calculate so it will be done outside the request/response cycle. However, what happens if
they visit the site right before midnight, and then the award() method isn’t actually called until the next day? Using
the freeze method you can provide additional state to the award() method.

1.2. Asynchronous Badges 5

brabeion Documentation, Release 0.1.dev11

6 Chapter 1. Using brabeion

CHAPTER 2

Models in brabeion

class brabeion.models.BadgeAwarded(models.Model)

user
The user who was awarded this badge.

awarded_at
The datetime that this badge was awarded at.

slug
The slug for the Badge this refers to.

name
The name for the Badge this refers to, for the approrpiate level.

description
The description for the Badge this refers to, for the approrpiate level.

7

brabeion Documentation, Release 0.1.dev11

8 Chapter 2. Models in brabeion

CHAPTER 3

Templatetags in brabeion

brabeion offers a number of templatetags for your convenience, which are available in the brabeion_tags
library.

3.1 badge_count

This tag returns the number of badges that have been awarded to this user, it can either set a value in context, or simple
display the count. To display the count its syntax is:

{% badge_count user %}

To get the count as a template variable:

{% badge_count user as badges %}

3.2 badges_for_user

This tag provides a QuerySet of all of a user’s badges, ordered by when they were awarded, descending, and makes
them available as a template variable. The QuerySet is composed of BadgeAwarded instances.

{% badges_for_user user as badges %}

9

brabeion Documentation, Release 0.1.dev11

10 Chapter 3. Templatetags in brabeion

CHAPTER 4

Signals in brabeion

brabeion makes one signal available to developers.

brabeion.signals.badge_awarded
This signal is sent whenever a badge is awarded to a user. It provides a single argument, badge, which is an
instance of BadgeAwarded.

11

brabeion Documentation, Release 0.1.dev11

12 Chapter 4. Signals in brabeion

Python Module Index

b
brabeion.models, 7
brabeion.signals, 11
brabeion.templatetags.brabeion_tags, 9

13

brabeion Documentation, Release 0.1.dev11

14 Python Module Index

Index

A
award(), 4
awarded_at (brabeion.models.BadgeAwarded attribute), 7

B
badge_awarded (in module brabeion.signals), 11
BadgeAwarded (class in brabeion.models), 7
brabeion.base.Badge (built-in class), 3
brabeion.models (module), 7
brabeion.signals (module), 11
brabeion.templatetags.brabeion_tags (module), 9

D
description (brabeion.models.BadgeAwarded attribute), 7

E
events, 4

L
levels, 3

M
multiple, 4

N
name (brabeion.models.BadgeAwarded attribute), 7

S
slug, 3
slug (brabeion.models.BadgeAwarded attribute), 7

U
user (brabeion.models.BadgeAwarded attribute), 7

15

	Using brabeion
	Getting Started
	Asynchronous Badges

	Models in brabeion
	Templatetags in brabeion
	badge_count
	badges_for_user

	Signals in brabeion
	Python Module Index

