

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	brabeion 0.1.dev11 documentation

Welcome to brabeion’s documentation!

brabeion is a powerful, extensible, reusable application that provides
support for awarding badges to users in Django. It provides simple
abstractions over awarding users badges for completing tasks, including
multi-level badges, and repeatable badges, making it super simple to add badges
to a Django project.

	Using brabeion
	Getting Started

	Asynchronous Badges

	Models in brabeion

	Templatetags in brabeion
	badge_count

	badges_for_user

	Signals in brabeion

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	brabeion 0.1.dev11 documentation

Using brabeion

Getting Started

	
class brabeion.base.Badge

	

brabeion works by allowing you to define your badges as subclasses of a
common Badge class and registering them with brabeion. For example if
your site gave users points, and you wanted to award three ranks of badges
based on how many points a user had your badge might look like this:

from brabeion import badges
from brabeion.base import Badge, BadgeAwarded

class PointsBadge(Badge):
 slug = "points"
 levels = [
 "Bronze",
 "Silver",
 "Gold",
]
 events = [
 "points_awarded",
]
 multiple = False

 def award(self, **state):
 user = state["user"]
 points = user.get_profile().points
 if points > 10000:
 return BadgeAwarded(level=3)
 elif points > 7500:
 return BadgeAwarded(level=2)
 elif points > 5000:
 return BadgeAwarded(level=1)

badges.register(PointsBadge)

There are a few relevant attributes and methods here.

	
slug

	The unique identifier for this Badge, it should never change.

	
levels

	A list of the levels available for this badge (if this badge doesn’t have
levels it should just be a list with one item). It can either be a list of
strings, which are the names of the levels, or a list of
brabeion.base.BadgeDetail which have both names and description.

	
events

	A list of events that can possibly trigger this badge to be awarded. How
events are triggered is described in further detail below.

	
multiple

	A boolean specifying whether or not this badge can be awarded to the same
user multiple times, currently if this badge has multiple levels this must
be False.

	
award(self, **state)

	This method returns whether or not a user should be awarded this badge.
state is guarnteed to have a "user" key, as well as any other
custom data you provide. It should return either a BadgeAwarded
instance, or None. If this Badge doesn’t have multiple levels
BadgeAwarded doesn’t need to be provided an explicit level.

Note

BadgeAwarded.level is 1-indexed.

Now that you have your PointsBadge class you need to be able to tell
brabeion when to try to give it to a user. To do this, any time a user
might have received a badge just call badges.possibly_award_badge with
the name of the event, and whatever state these events might need and
brabeion will handle the details of seeing what badges need to be awarded
to the user:

from brabeion import badges

def my_view(request):
 if request.method == "POST":
 # do some things
 request.user.profile.award_points(15)
 badges.possibly_award_badge("points_awarded", user=request.user)
 # more view

By default badges will be awarded at the current time, if you need to overide
the award time of the badge you can pass a force_timestamp keyword argument
to possible_award_badge().

Asynchronous Badges

Note

To use asynchronous badges you must have
celery [http://github.com/ask/celery] installed and configured.

If your Badge.award() method takes a long time to compute it may be
prohibitively expensive to call during the request/response cycle. To solve
this problem brabeion provides an async option to Badges. If this
is True brabeion will defer calling your award() method, using
celery, and it will be called at a later time, by another process (read the
celery docs [http://celeryproject.org/docs/] for more information on how
celery works).

Because award() won’t be called until later you can define a freeze()
method which allows you to provide and additional state that you’ll need to
compute award() correctly. This may be necessary because your Badge
requires some mutable state.

class AddictBadge(Badge):
 # stuff
 async = True

 def freeze(self, **state):
 state["current_day"] = datetime.today()
 return state

In this example badge the user will be awarded the AddictBadge when they’ve
visited the site every day for a month, this is expensive to calculate so it
will be done outside the request/response cycle. However, what happens if they
visit the site right before midnight, and then the award() method isn’t
actually called until the next day? Using the freeze method you can provide
additional state to the award() method.

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	brabeion 0.1.dev11 documentation

Models in brabeion

	
class brabeion.models.BadgeAwarded(models.Model)

	
	
user

	The user who was awarded this badge.

	
awarded_at

	The datetime that this badge was awarded at.

	
slug

	The slug for the Badge this refers to.

	
name

	The name for the Badge this refers to, for the approrpiate level.

	
description

	The description for the Badge this refers to, for the approrpiate
level.

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	brabeion 0.1.dev11 documentation

Templatetags in brabeion

brabeion offers a number of templatetags for your convenience, which are
available in the brabeion_tags library.

badge_count

This tag returns the number of badges that have been awarded to this user, it
can either set a value in context, or simple display the count. To display the count its syntax is:

{% badge_count user %}

To get the count as a template variable:

{% badge_count user as badges %}

badges_for_user

This tag provides a QuerySet of all of a user’s badges, ordered by when
they were awarded, descending, and makes them available as a template variable.
The QuerySet is composed of BadgeAwarded
instances.

{% badges_for_user user as badges %}

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	brabeion 0.1.dev11 documentation

Signals in brabeion

brabeion makes one signal available to developers.

	
brabeion.signals.badge_awarded

	This signal is sent whenever a badge is awarded to a user. It provides a
single argument, badge, which is an instance of
BadgeAwarded.

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	brabeion 0.1.dev11 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 brabeion	

 	
 	
 brabeion.models	

 	
 	
 brabeion.signals	

 	
 	
 brabeion.templatetags.brabeion_tags	

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	brabeion 0.1.dev11 documentation

Index

 A
 | B
 | D
 | E
 | L
 | M
 | N
 | S
 | U

A

 	

 	award()

 	

 	awarded_at (brabeion.models.BadgeAwarded attribute)

B

 	

 	badge_awarded (in module brabeion.signals)

 	BadgeAwarded (class in brabeion.models)

 	brabeion.base.Badge (built-in class)

 	

 	brabeion.models (module)

 	brabeion.signals (module)

 	brabeion.templatetags.brabeion_tags (module)

D

 	

 	description (brabeion.models.BadgeAwarded attribute)

E

 	

 	events

L

 	

 	levels

M

 	

 	multiple

N

 	

 	name (brabeion.models.BadgeAwarded attribute)

S

 	

 	slug

 	

 	(brabeion.models.BadgeAwarded attribute)

U

 	

 	user (brabeion.models.BadgeAwarded attribute)

 Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		brabeion 0.1.dev11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Eldarion.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

